
 
 

 

 

 



 

When the turning gets tough . . . 13 Mar 1993 

Mathematics showed there is an ideal way to corner in motor racing. Only 
the drivers who apply this technique instinctively will become champions  

 

 

Getting to the top in motor racing requires the ability to drive a car consistently close 

to the performance limits of its tyres, engine and chassis: the sport ruthlessly weeds 

out those who cannot raise their car-control skills to the highest levels. But a driver 

who reaches the top international level (such as Formula One or Indycar racing) 

finds that most competitors possess very similar abilities. So what marks out the 
champions?  

Virtually anyone can take a car to its limits on a straight track. Most races are won 

and lost where the cars are moving slowest - at the corners. The skill comes in 

choosing a speed and path that loses the least time negotiating them. This is where 
champions show their mettle.  

Figure 1 shows a simplified 'performance boundary curve' for one 

possible car and corner combination at a particular speed. 

Representing all possible speeds would require a family of similar 

curves or a three-dimensional picture. A skilled driver taking a 

corner slows down (applies longitudinal deceleration), corners 

(applies lateral acceleration) and then accelerates out and away 

(applies longitudinal acceleration). To control the car, the driver 

must ensure that the forces acting on the tyres are within the 

limits of their traction, and this involves a trade-off between the forces of braking 

and turning. As the driver corners, increasing lateral acceleration, the available 

longitudinal acceleration falls: high acceleration while turning too sharply causes a 
skid.  

Top international drivers keep their cars just inside their performance boundaries 

almost all the time, though the boundary curve varies depending on the track 

conditions and the state of the car. Aerodynamic design complicates matters further. 

Air rushing over aerofoils on the car produces downforce that helps anchor it to the 

track. This allows greater cornering acceleration, but also increases wind resistance. 

The ratio of longitudinal to lateral acceleration alters as speed changes: at higher 

speeds the boundary curve becomes more flattened at the top and extends further 

to the right. Much of the skill that drivers acquire up to the international level lies in 

being able to read these changing variables, determine from moment to moment 

where the performance boundary lies and drive the car as close to it as possible. 
Acquiring this skill is a life's work, and very few drivers master it completely.  

But for the elite who do, what is left to learn? Can anything help them further? Our 

studies with world champions indicate that one of the most important extra skills to 

learn is the optimum time to spend at the different parts of the performance 

boundary.  
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Figure 2 shows a similar curve to Figure 1, with bars added to 

indicate the amount of time spent at each part of the curve. Taking 

the corner, the 'red' driver spends almost all of the time in the 

pure cornering region, at almost constant speed, or zero 

longitudinal acceleration. The 'blue' driver spends more time 

braking and accelerating. Both operate the car at its limit all the 

time.  

We have developed computer simulations which show that for each boundary shape 

there is an optimum amount of time that should be spent on each part of the curve. 

The simulations take account of track variables, including the lengths of the straights 

before and after the corner, the angle the corner turns through, its inside and 

outside radii, and the surface's frictional coefficient. They also have to deal with 

vehicle variables, which are much more complex because they are interrelated: the 

cornering acceleration available at each speed depends on how hard the driver is 

braking and the line the car is taking. Cornering will cause the car to roll, and 

braking while cornering may cause it to yaw - so that it no longer points in the 

direction it is travelling. These factors alter the downforce, and thus the degree of 

cornering acceleration that can be applied before a skid occurs. From data acquired 

in repeated runs, we have built up matrices to describe the boundaries for cars 
under various conditions, and have fed these into the simulation.  

The optimal solution differs from corner to corner, and from car to car on the same 

corner. What is clear is that a world champion will usually adopt a driving pattern 

that matches our computer simulations, whereas less skilled drivers consistently do 

not. This appears to distinguish true champions from other high-ranking drivers. 

More surprising is that, regardless of experience, most drivers never master this skill 
- and remain unaware of its importance.  

Tighter routes to results  

A driver can adjust the time a car spends on each part of the boundary curve by 

taking different paths through a corner. Figure 3 shows two 

possibilities. The red line is a completely even, circular path. The 

blue line is a very skewed path, in which the driver has started to 

turn later. The turn quickly becomes tighter than the smooth 

curve, but the driver exits in a wider curve further down the 

following straight. (There are of course infinitely more possible 
paths.)  

These two cornering paths can be defined by their radii of curvature at each point, 

and this can be plotted to highlight the differences between the two paths. Tiny 

differences in paths are better highlighted by plotting the inverse of the radius. In 

Figure 4, the red line shows this profile for the circular path, and 

the blue line that for the skewed path. A driver following the 

circular path spends almost all the time at the 'cornering only' 

region of the performance boundary, keeping the speed almost 

constant throughout the corner. The tighter minimum radius of 

curvature of the skewed path forces the driver to enter the corner 

more slowly, but the gentler exit path allows a higher exit speed. Because the 'blue' 

driver changes speed more while passing through the corner, these differences are 

reflected in the time bars being spread more evenly round the boundary curve; the 
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'red' driver's time bars are more clustered.  

In reality, most drivers take very similar paths through a corner. The differences are 

so small - typically around 10 centimetres - that they usually go unnoticed by even 

the keenest observer. To measure the differences we have developed a radio 

tracking system which can determine the position of the vehicle to an accuracy of 1 

centimetre every hundredth of a second around an entire race track. It works by 

measuring the phase of radio reflections at receivers located around the track. 

Unscrambling the multiple reflections including those from obstacles around the track 

is a difficult task that requires a sophisticated computer program and parallel-
processing transputers. Ford is now using this system for car development.  

Using our location system we compared the paths taken by two drivers round one 

corner of a Ford test track. One was Jackie Stewart, a three-time Formula One world 

champion now aged 52. 'Driver B' was a highly competitive 24-year-old European 

driver now in Formula 3000 racing, the level below Formula One. 

Figure 5a shows the curvature profiles measured on three passes 

through the corner by Stewart. Figure 5b shows two passes of the 

same corner by driver B in the same car.  

There are two obvious differences. First, Driver B's profiles show 

lots of wobbles and inconsistencies, while Stewart's are extremely 

smooth and consistent. More important is the overall shape of the 

plots.  

The corner has an inner radius of 150 metres and an angle of turn 

of 85 degree. The inside edge is therefore at least 223 metres long, though the 

drivers follow a wider and therefore longer path. Driver B's curvature profile is much 

flatter than Stewart's: the radius of his path 50 metres into the corner remains 

almost unchanged until after 230 metres. The bottom of his profile is almost square. 

Stewart's profile is much more rounded, closing up to a tighter entry curve about 

100 metres into the corner and then straightening out to almost twice the minimum 

radius after 230 metres. Driver B's path is like the red line in Figure 4, while 

Stewart's resembles the blue line.  

Stewart actually spends more time in the corner than Driver B because he has to 

take the sharper curve more slowly. However, he can exit faster because of his wider 

finishing radius, and this higher speed advantage stays with him all the way down 

the following straight, more than making up for time lost in the corner. Taking the 

corner and the straights on either side as a single problem, 
Stewart found the fastest solution (see Figure 6).  

Choosing how much to skew the corner is a very complex problem. 

Skewing too much (that is, turning too late) means that the corner 

must be taken so slowly that the time lost there cannot be 

recouped fully in the following straight; it may even result in a 

lower exit speed. Skewing too little (turning early), like Driver B, can also lose speed 
in the straight.  

We have developed a measurement that we call the 'k number' , which describes 

how skewed a curve the driver has taken through the corner. A path which is 

completely circular throughout has a k of 0. Higher values of k describe increasingly 
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skewed paths. Specifically, k refers to how quickly the path flattens out. Our 

computer simulations try different values of k, then look at the paths that result for 

various car boundary performances and work out the time taken for the corner. The 

simulations show that there is no single optimum value of k for all cars or corners: a 

car taking different corners will require different solutions. Even for 

the same corner, different cars will require different values of k. 

This is shown in Figure 7, which plots k against the time taken by 

two cars, a BMW M series set up by Schnitzer (the World Group A 

Saloon car champion works team) and a Ford Laser Tx3i (a 1.8-

litre fuel-injected model derived from the Ford Escort) to complete 

a single corner and the two straights on either side. The minimum 

time for the BMW occurred at k=13.8. For the Laser Tx3i it was 

closer to k=4, which means for best results in this corner the Laser 

should be driven in a much rounder curve than the Schnitzer.  

In general, the shorter the corner and the longer the straights either side, the more 

the path should be skewed. Similarly, the greater the ratio of the car's potential 

forward acceleration to cornering acceleration - a measure defined by the car's speed 

and performance characteristics, not the corner - the more the path should be 

skewed.  

We have measured numerous drivers in a range of cars over four years in Britain, 

the US, Germany, Japan and New Zealand, and found that only champions uniquely 

seem to possess the ability to approach the correct k number, although even they 

are not perfect. Lesser drivers seem to fall into certain stereotyped patterns, and 

they fail to adjust their driving appropriately for different conditions - even though 

they still drive the car at the boundary limit. This explains why some drivers can be 

expert in one type of car yet struggle in a different class. The true champion, on the 

other hand, can quickly approach the optimum k for any car. For example, on our 

test track Stewart consistently drove a slightly different line with a Ford Mustang 

than with a Ford Thunderbird; these differences are predicted in our computer 
model.  

Looking at data collected from accelerometers on the cars driven by Stewart and 

Driver B, it is Driver B who turns out to have had slightly higher cornering 

accelerations throughout the entire curve. As a younger driver, with slightly faster 

reflexes, he can drive the car slightly closer to the limit than the retired Stewart. 

However, Stewart is still quicker because he selects better k values. Driver B called 

on tremendous car-control skills to take the car closer to its performance limits. The 

trouble is, they were the wrong parts of the limits, and he pushed the car so hard 

that he had difficulty controlling it. This is what caused the wobbles in his curves 

(Figure 5b). Information derived from our computer simulation 

could make up for the sensitivity to car and track that all but the 

best drivers lack. By debriefing drivers after practice circuits, or 

giving them instructions by radio, it should be possible to train 

them to choose a better k under different conditions.  

So what do our findings imply for Nigel Mansell, transferring from 

Formula One to Indycar racing? Among other differences, most 

Indy tracks have steeper banking - up to 9 '12' - than is usual in 

Formula One. Cornering on a slope means that part of the lateral 

acceleration acts in the direction that the driver perceives as 
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downwards (Figure 8), and this can fool people used to level tracks 

into underestimating the ratio of lateral to longitudinal acceleration 

acting on the tyres. As a result, they may try to corner too late and 

too sharply. Mansell will have to learn how to interpret these 

differently perceived forces to find the optimum k: at 200 mph on 

a quarter-mile corner (as at the Indianapolis 500 racetrack), the 

banking creates a 2 per cent difference in the perceived ratio of 

lateral to longitudinal acceleration - small, but significant at those 
speeds.  

Other drivers who have switched from Formula One to Indycar racing confirm that 

this is a real problem. Initially they consistently overestimate the required k - that is, 

they turn too late. It takes time to learn to turn in earlier, to take the more even line 

that a banked track requires. The problem is further compounded by the different 

aerodynamics of Indycar and Formula One designs. Even drivers supposed to be at 

the peak of their abilities find the change confusing. One who made the switch 
needed a year to adjust.  

Unfortunately, finding the optimum solution is nowhere near as simple as just 

looking at the acceleration ratios as we have done here. There are many other 

variables, such as tyre slip (in which the tyres slide, minutely, during cornering 

without the car skidding out of control). Also, complex interactions between the 

throttle and a car's steering have an important effect which differs from car to car. 

However, we believe that the next revolution in motor racing could well come from 

using sophisticated mathematical analysis and real-time feedback techniques to give 

drivers a competitive advantage. Military pilots already rely on real-time computer 

analysis and feedback from head-up displays to assist them in combat. Applying 

many of those techniques, together with the type of mathematical treatment 

outlined above, will certainly make as big a contribution as standard telemetry 
analysis of the car itself has already made.  

Kerry Spackman is a consultant to the motor industry, specialising in analysis of 

human interaction with veichle dynamics. Sze Tan is a lecturer in physics at the 
University of Auckland, New Zealand.  

* * *  

Nigel Mansell does this in his head - can you?  

Deciding how late to turn into a corner is a matter of getting the right value for k. 

We start with the cornu spiral (a curve whose curvature K at any point is 

proportional to the distance from the zero point). This spiral can be generated from 

the Fresnel integral, usually used for analysing intensities of diffraction patterns, 

which generates two variables x and y from the value of a third, u. Each value of u 

gives a different value of x and y when the pair of integrals generating them are 
solved (see equations).  

y =  
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x =  

We then look at the path taken by the driver, analyse the small 

section around its tightest radius of curvature, and scale it to the 

cornu spiral. Then we slide the driver's curve along the spiral, 

looking for the point where the two curves match most closely. 

This happens at a particular value of the Fresnel integral's top 
value u. The k value is then the inverse of u.  

Of course, we do this on a computer after exhaustive 

measurements on the track. The drivers have to find the best k 

using just their senses and instinct. Perhaps it's not surprising that so few of them 

truly master the ability to find the right line.  

KERRY SPACKMAN and SZE TAN  

From New Scientist magazine, vol 137 issue 1864, 13/03/1993, page 28 

 

© Copyright New Scientist, RBI Limited 2001 

 

javascript:displayWindow('turning_files/18644308.jpg',448+40,478+120)

